产品知识

材料表面形貌测试分析大全
来源:测了么
    光学显微镜(OM)检查
    光学显微镜利用的是凸透镜的放大成像原理,最佳分辨率是0.2 um。因为采用可见光作为光源,光学显微镜对于色彩的识别非常敏感和准确,不仅能观察样品表层组织,而且在表层以下的一定范围内的组织同样也可被观察到。
    测试仪器:
    应用:
    (1)外观检查
    (2)尺寸测量
    扫描电子显微镜/X射线能谱仪(SEM/EDS)
    扫描电子显微镜/X射线能谱仪(SEM/EDS)是利用电子和物质的相互作用,采集二次电子、背散射电子等,获取被测样品本身的各种物理、化学性质的信息,如形貌、组成、晶体结构、电子结构和内部电场或磁场等。
    测试仪器:
    扫描探针显微镜/原子力显微镜(AFM)
    原子力显微镜(AFM)能够表征物体表面三维形貌信息,其横向分辨率可达0.2nm,纵向分辨率可达0.01nm。提供原子或接近原子分辨率的表面图形,是测定埃尺度表面粗糙样本的理想技术。
    测试仪器:
    俄歇电子能谱 (AES, Auger)
    俄歇电子能谱(AES、Auger)是一种利用高能电子束为激发源,聚焦在小块表面形貌上的表面分析技术。在靠近表面5-20埃范围内化学分析的灵敏度高,高空间分辨率,最小可达到6nm;能探测周期表上He以后的所有元素及元素分布;通过成分变化测量超薄膜厚。
    当用来与溅射离子源的结合时,AES能胜任大、小面积的深度剖面。当与聚焦离子束(FIB)一起使用时,它对于截面分析是很有用的。多用于半导体行业。
    测试仪器:俄歇电子能谱仪。
    X射线光电子能谱/电子光谱化学分析仪(XPS/ESCA)
    X射线光电子能谱(XPS),也称电子光谱化学分析仪(ESCA),用来鉴定样品表面的化学性质及组成的分析,其特点在光电子来自表面10nm以内,仅带出表面的化学信息,具有分析区域小、分析深度浅和不破坏样品。
    工作原理:
    使用X射线去辐射样品,使原子或分子的内层电子或价电子受激发射出来光电子,可以测量光电子的能量和数量,从而获得待测物组成。
    测试仪器:
    二次离子质谱(SIMS)
    二次离子质谱分析技术(SIMS)是通过一束初级离子来溅射样品表面。二次离子在溅射过程中形成并被质谱仪提取分析。
    测试原理:
    样品表面被高能聚焦的一次离子轰击时,一次离子注入被分析样品,把动能传递给固体原子,通过层叠碰撞,引起中性粒子和带正负电荷的二次离子发生溅射,根据溅射的二次离子的质量信号,对被轰击样品的表面和内部元素分布特征进行分析。
    在高能一次离子作用下,通过一系列双体碰撞后,由样品内到达表面或接近表面的反弹晶格原子获得了具有逃逸固体所需的能量和方向时,就会发生溅射现象。
    测试仪器:
    飞行时间二次离子质谱仪(TOF-SIMS)
    TOF-SIMS具备高灵敏度,测量浓度可达到ppm数量级,高纵向分辨率,分析区域小等特点。测试可以得知样品表面和本体的元素组成和分布,能最好地实现对样品几乎无损的静态分析,在材料的成份、掺杂和杂质沾污等方面的分析中有重要地位。
    测试原理:
    利用聚焦的一次离子束在样品上进行稳定的轰击,电离的二次粒子(溅射的原子、分子和原子团等)按质荷比实现质谱分离,收集经过质谱分离的二次离子,可以得知样品表面和本体的元素组成和分布。其离子飞行时间只依赖于他们的质量。
    测试仪器:
    X射线荧光分析(XRF)
    X射线荧光分析是一种用于量化固态和液态样品的元素组成的非破坏性的技术。使用X射线激发样品上的原子,使之放射出带有元素特征的X射线,测量这些X射线的能量及强度。
    测试仪器:
    激光共聚焦显微镜(CLSM)
    激光扫描显微镜,可通过彩色处理系统获得与电子扫描显微镜相媲美的图像,实现非接触式3D测量。激光共聚焦显微镜以1nm 分辨率的良好口啤,能进行远远优于传统的高精度测量。
    测试仪器:
    应用:
    高度、宽度和横截面测量;线条粗糙度测量;体积测量;自动宽度测量;轮廓比较测量;2D + 3D 测量……